Search results for " SEMICONDUCTORS"

showing 10 items of 96 documents

High accuracy Raman measurements using the Stokes and anti-Stokes lines

1997

We show that by measuring the separation between the Stokes and anti-Stokes peaks excited by two different laser lines we obtain a very precise determination of absolute phonon energies. The method is useful for measuring small changes of these energies with strain, temperature, laser power, etc. It doubles the changes and avoids the necessity of using the reference lines in the Raman spectra. The method can be applied for the determination of phonon deformation potentials, for the characterization of strained heteroepitaxial layers, and for micro-Raman analysis of strain in silicon integrated circuits. We give examples of phonon shifts in Si, Ge, GaAs, InAs, and GaP as a function of applie…

SiliconMaterials scienceSiliconRaman SpectraPhononAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementIndium CompoundsMolecular physicsGallium arsenidelaw.inventionGallium Arsenidesymbols.namesakechemistry.chemical_compoundThermo-Optical EffectsCondensed Matter::Materials Sciencelaw:FÍSICA [UNESCO]Laser power scalingSemiconductor Epitaxial LayersLaser Beam EffectsElemental SemiconductorsSilicon ; Germanium ; Elemental Semiconductors ; Gallium Arsenide ; Indium Compounds ; Gallium Compounds ; III-V Semiconductors ; Raman Spectra ; Phonon Spectra ; Semiconductor Epitaxial Layers ; Integrated Circuit Technology ; Deformation ; Laser Beam Effects ; Thermo-Optical EffectsGermaniumUNESCO::FÍSICAIII-V SemiconductorsPhonon SpectraLaserCondensed Matter::Mesoscopic Systems and Quantum Hall EffectIntegrated Circuit TechnologyDeformationchemistryExcited stateGallium CompoundssymbolsDeformation (engineering)Raman spectroscopy
researchProduct

Recombination processes in unintentionally doped GaTe single crystals

2002

Emission spectra of GaTe single crystals in the range of 1.90–1.38 eV have been analyzed at different temperatures and excitation intensities by photoluminescence, photoluminescence excitation, and selective photoluminescence. A decrease in band gap energy with an increase in temperature was obtained from the redshift of the free exciton recombination peak. The energy of longitudinal optical phonons was found to be 14±1 meV. A value of 1.796±0.001 eV for the band gap at 10 K was determined, and the bound exciton energy was found to be 18±0.3 meV. The activation energy of the thermal quenching of the main recombination peaks and of the ones relating to the ionization energy of impurities and…

PhotoluminescenceImpurity statesBand gapChemistryExcitonGallium compounds ; III-VI semiconductors ; Photoluminescence ; Impurity states ; Cefect states ; Electron-phonon interactions ; Phonon-exciton interactions ; Excitons ; Red shift ; Radiation quenchingDopingGallium compoundsRadiation quenchingUNESCO::FÍSICAIII-VI semiconductorsGeneral Physics and AstronomyPhonon-exciton interactionsCefect statesAcceptorRed shiftElectron-phonon interactionsCondensed Matter::Materials Science:FÍSICA [UNESCO]ExcitonsPhotoluminescence excitationEmission spectrumIonization energyAtomic physicsPhotoluminescence
researchProduct

Growth of low-density vertical quantum dot molecules with control in energy emission

2010

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License.-- This article is part of the series 8th International Workshop on Epitaxial Semiconductors on Patterned Substrates and Novel Index Surfaces.

NanostructureMaterials scienceNanochemistryNanotechnologyEpitaxyCondensed Matter::Materials ScienceMaterials Science(all)lcsh:TA401-492NanotechnologyMoleculeGeneral Materials ScienceChemistry/Food Science generalMaterial Sciencebusiness.industryQuantum dotsEngineering GeneralSpecial Issue ArticleMaterials Science generalCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsPhysics General8th International Workshop on Epitaxial Semiconductors on Patterned Substrates and Novel Index SurfacesQuantum dotMolecular MedicineOptoelectronicslcsh:Materials of engineering and construction. Mechanics of materialsPhotonicsbusinessDroplet epitaxyLayer (electronics)Molecular beam epitaxyMolecular beam epitaxy
researchProduct

Solid-state mechanochemical synthesis of multinary metal halide semiconductors for optoelectronics: From powder to thin film

2020

En la última década, las perovskitas de haluro de plomo, así como otros haluros de metales múltiples, incluidas las alternativas sin plomo, han demostrado ser materiales prometedores para su uso en optoelectrónica. Por lo tanto, se buscan activamente nuevas formas de producir semiconductores de alta pureza a gran escala. Por tanto, el objetivo principal de esta tesis doctoral es el desarrollo de perovskitas y semiconductores relacionados utilizando métodos sin disolventes. Además, con la perspectiva del uso de dichos materiales en optoelectrónica a escala industrial, el foco está puesto en trabajar con materiales benignos para el desarrollo de alternativas a las perovskitas tóxicas. La sínt…

:CIENCIAS TECNOLÓGICAS [UNESCO]multinary metal halide semiconductorsoptoelectronicsthin filmUNESCO::QUÍMICAperovskitessolvent freemechanochemistryUNESCO::CIENCIAS TECNOLÓGICAS:QUÍMICA [UNESCO]single source vacuum deposition
researchProduct

Bulk heterojunctions by boramers for plastic photovoltaics

2009

Organic semiconductors conductive polymers plastic solar cells thin films bulk heterojunctions
researchProduct

Alkylsilyl compounds as enablers of atomic layer deposition: analysis of (Et3Si)3As through the GaAs process

2016

A new chemistry has been developed to deposit GaAs, the quintessential compound semiconductor. The ALD process is based on a dechlorosilylation reaction between GaCl3 and (Et3Si)3As. Characteristic ALD growth was demonstrated, indicating good applicability of the alkylsilyl arsenide precursor. ALD of GaAs produced uniform, amorphous and stoichiometric films with low impurity content. This was done with saturating growth rates and an easily controlled film thickness. Crystallization was achieved by annealing. Even though the growth rate strongly decreased with increasing deposition temperature, good quality film growth was demonstrated at 175 to 200 °C, indicating the presence of an ALD wind…

compound semiconductorsMaterials scienceAnnealing (metallurgy)Analytical chemistry02 engineering and technology010402 general chemistryEpitaxy01 natural sciencesArsenidelaw.inventionAtomic layer depositionchemistry.chemical_compoundGallium arsenideImpuritylawMaterials ChemistryThin filmCrystallizationta216ta116ta114General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesAmorphous solidamorphous filmschemistry0210 nano-technologystoichiometric filmsJournal of Materials Chemistry C
researchProduct

Above-bandgap ordinary optical properties of GaSe single crystal

2009

We report above-bandgap ordinary optical properties of ε-phase GaSe single crystal. Reference-quality pseudodielectric function 〈ε(E)〉 = 〈ε1(E)〉+i〈ε2(E)〉 and pseudorefractive index 〈N(E)〉 = 〈n(E)〉+i〈k(E)〉 spectra were measured by spectroscopic ellipsometry from 0.73 to 6.45 eV at room temperature for the light polarization perpendicular to the optic axis (math⊥math). The 〈ε〉 spectrum exhibited several interband-transition critical-point structures. Analysis of second-energy derivatives calculated numerically from the measured data yielded the critical-point energy values. Carmen.Martinez-Tomas@uv.es

EllipsometryCondensed matter physicsChemistryBand gapUNESCO::FÍSICAGallium compoundsRefractive indexCritical points ; Dielectric function ; Ellipsometry ; Energy gap ; Gallium compounds ; III-VI semiconductors ; Refractive indexIII-VI semiconductorsPhysics::OpticsGeneral Physics and AstronomyCritical pointsDielectric functionPolarization (waves)Spectral lineEnergy gapOptical axis:FÍSICA [UNESCO]EllipsometryPerpendicularRefractive indexSingle crystalJournal of Applied Physics
researchProduct

InAlN underlayer for near ultraviolet InGaN based light emitting diodes

2019

We report on InAlN underlayer (UL) to improve the efficiency of near ultraviolet (NUV) light emitting diodes (LEDs). While InGaN UL is commonly used in high-efficiency blue LEDs it may absorb light for shorter wavelengths. InAlN lattice-matched to GaN exhibits a bandgap of 4.6 eV. This allows alleviating absorption issues in NUV LEDs. We demonstrate that the internal quantum efficiency of 405 nm single InGaN/GaN quantum well LEDs with InAlN UL is similar to 70% compared to less than 10% for LEDs without UL. Excellent I-V characteristics are achieved thanks to polarization charge screening with high doping level at the InAlN/GaN interface. (C) 2019 The Japan Society of Applied Physics

Materials sciencebusiness.industrylawGeneral EngineeringGeneral Physics and AstronomyOptoelectronicsNear ultravioletbusinessSettore ING-INF/01 - ElettronicaLight-emitting diodelaw.inventionNitride semiconductors Nitride-based LEDs Underlayer effects on nitride-based LEDs
researchProduct

Failure analysis of normally-off GaN HEMTs under avalanche conditions

2020

Gallium nitride (GaN) high electron-mobility transistors (HEMTs) are promising devices in the power electronics field owing to their wide bandgap (WBG). However, all the potential advantages provided by their WBG require reliability improvement. In industrial applications, robustness is one of the main factors considered by circuit designers. This study focuses on the observation of the degradation behavior of the main waveforms of unclamped inductive-switching (UIS) test circuits of two different commercial GaN HEMT structures. The relevance of this study lies in the potential applications of these devices to high-voltage applications and automotive systems where they are subjected to many…

Power HEMTMaterials scienceIII-V semiconductorswide band gap semiconductorsbusiness.industryoutagesion beamsNormally offCondensed Matter Physicshigh electron mobility transistorsAvalanche breakdownElectronic Optical and Magnetic MaterialsMaterials ChemistryOptoelectronicsimpact ionizationElectrical and Electronic Engineeringbusinessgallium nitride
researchProduct

Luminescence properties of III-V multi-junctions solar cells

2012

The recent achievement of multi-junctions solar cells, based on III-V semiconductors, exceeding 43% efficiency, has stimulated a rapid growth of concentration photovoltaic (CPV) technology. The large efficiency of these cells is based on the matching between the semiconductors band gap and the solar spectrum and the capability of working under concentrated illumination, up to ~1000 suns. The research pays, therefore, attention to investigate in detail the mechanisms that affect the conversion efficiency, such as the non radiative losses that increase the cell temperature thus favoring the electron-hole (e-h) recombination. With the aim to clarify the performances of these III-V cells, here …

Solar cells III-V semiconductors electron-hole radiative recombination
researchProduct